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1.0 INTRODUCTION

*In recent years some important developments have occurred in the theory of two-
dimensional laminar boundary-layer flows. The crucial discovery, due to van
Donunelen and Shen1, is that the solution of the boundary-layer equations with

boundary conditions corresponding to a circular cylinder started impulsively
from rest develops a singularity. This with u,, denoting the velocity of the

cylinder and a its radius, occurs at a time ut/a = 3.0 and at an angular

distance 8 = 1110 from the forward stagnation point. At this time the position

of zero skin friction is at 0 = 1060 close to, but not coincident with, the

* singularity. This discovery was made by solving the governing boundary-layer

equations in Lagrangian form; subsequently, the existence of the singularity

* was confirmed by Cebeci2 using the Eulerian form and by Cowley3 using the
* method of series truncation. The importance of this result is two-fold.

* First, it is of importance to the fundamental theory of high-Reynolds number

flows in indicating that an interactive theory is necessary to understand the

* evolution of the flow field at a finite time after the motion starts, rather
* than only after a long time. Secondly, it is clear that significant changes

will then occur in the flow field and these may be related to the phenomenon

of vortex shedding. The physical processes which take place during the oscil-
lation of the angle of attack of the airfoil Are complicated and depend on a

large number of parameters '. For example, an important characteristic is

* a large vortex that is formed near the surface at some stage in the cycle and
causes stall to occur shortly afterwards. The occurrence of the vortex is
probably associated with a breakdown of the unsteady boundary layer6

* The purposes of the present research are to determine the relationship between

4 unsteady separation and singularities in the solution, and to explore the
possibilities of removing this singularity by interaction of the viscous and

* inviscid equations. In this report we describe the work that has been accomp-
lished under the contract. So far we have examined the evolution of the

4 boundary layer near the nose of an oscillating airfoil and found that, when the
reduced frequency is of the same order as in the experiments on dynamic stall,

* the unsteady boundary layer ceases to behave in a smooth manner just downstream
* of separation and before one cycle has been completed; as with the impulsively

started circular cylinder, this irregular behavior signals the onset of a
singularity in the solution of the boundary-layer equations. The equations an
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solution procedures used in the present study are described in Sections 2 and

*' 3, respectively, and the results are presented and discussed in Section 4.

2.0 EQUATIONS, INITIAL AND BOUNDARY CONDITIONS

The boundary-layer equations and their boundary conditions for unsteady

incompressible laminar flows on oscillating airfoils can be written as

u - 0 (2.1)

au au aau e uUe + a2u".w" -t+ u -+ v = ;- + Ue1- + V (2.2)

u(s,O,t) = 0, v(s,O,t) = 0, u(s,net) = ue(st) (2.3)

The solution of boundary-layer equations requires that the external velocity
distribution be specified. Since the present effort is directed toward solu-

tions near the leading edge of the airfoil, a local model for the potential
flow has been chosen in the place of a full-potential-flow code. We consider

an ellipse with major axis 2a and minor axis 2ad(T<<l) at an angle of

attack a(t). The surface of the body is defined by

x -a cose, y-" aT sine -W < a <

and with these definitions and to a first approximation, the external velocity

around the ellipse can be deduced from inviscid flow theory to be
• . +•

ue(s't) 0 (2.4)

/+

-0 0Here u (s,t) denotes a dimensionless velocity, u /u (I + T), the parameter

denotes a dimensionless distance related to the x- and y-coordinates of the
ellipse by x = 1/2 ar2 , y a a2E measured from the nose, and Eo (-c/r)
represents a dimensionless angle of attack. The parameter is also related
to the surface distance s by

"b S at ( + [2)1/2dt (2.5)

2
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We next define a dimensionless distance n by

•, 1/2

n R(1 + ) ]2- 2 Z( 1 + az (2.6a

with R = 2au,/v, and a dimensionless stream function f by

= [(1 + )aum.v 'l/24(s,n,t) (2.6b)

Introducing these relations together with Eq. (2.5) into Eqs. (2.1) and %2.2),

it can be shown that the continuity and momentum equations can be written as

2- e2/auf, fa_ _

E V f2 2) 2U- 23/2 Ue fl f

full + ] f + (1 + )U - + 11+ f f.

+ (1 + E (2.7)

Here primes denote differentiation with respect to n and tI = (1 + -)utla 2.

, The boundary conditions for f and f' become

f = f' = 0 at i =0,

f 1 + E211/2 -(,t) as n "  (2.8)

The definition of -ie(E,tl) is given by

Ue(Est) E + Eo(tl)

Ue(E,t) a U (2.9)-" u=I + T)

To complete the formulation of the problem, initial conditions must be speci-
fled in the (t,n) plane at some s = so, either on the lower or upper surface

of the airfoil as well as initial conditions in the plane on both surfaces of

the airfoil. In the latter case, if we assume that steady-flow conditions
prevail at t = 0, then the initial conditions in the (s,n)-plane can easily be

generated for both surfaces by solving the governing equations for steady flow,

which in this case, are given by Eq. (2.1) and by
i u due 2u

-u + v au Ue + V a+ u (2.10)

3

- .'" -'-",""' , -, , ,,,-,.~* . . . ...."-.. ' • '. . . . . *. . * • .. , -*.~* . .- -, .- ' •. .. -.- -.-. .- ,, -,



There is no problem with the initial conditions for Eqs. (2.1) and (2.10) since

the calculations start at the stagnation point.

The generation of the initial conditions in the (t,n)-plane are not so

straightforward to obtain as is discussed in Section 3.1.

3.0 SOLUTION PROCEDURE

The solution procedure for the set of equations and boundary and initial con-

ditions given in Section 2 can be achieved in two parts concerned, respec-

" tively, with the leading edge and downstream region. These two parts are

considered in the following two subsections. In both cases the solution

procedure makes use of Keller's box method, which is a two-point finite-

difference scheme extensively used for the solution of parabolic partial-

differential equations, as discussed by Bradshaw et al.

3.1 Leading-Edge Region

The generation of the initial conditions in the (t,n)-plane at s so

requires a special numerical procedure. Given, as we are, the complete veloc-

- ity profile distribution on the previous time line, there is, In principle, no

difficulty in computing values on the next time line by an explicit method, but

• -if we wish to avoid the stability problems associated with such a method by

using an implicit method, we are immediately faced with the problem of gener-

- ating a starting profile on the new time line.

In order to explain the problem further, it is instructive to see what happens

to the stagnation point as a function of time. For this purpose let us

consider Eq. (2.4). If we choose 0 (tl) to be of the form 0o(1 + A sinwt1),
-0 0and let ue ue/u (l + r), then Eq. (2.4) becomes

uiel(,tl) .(+ E(I + A sinit 1  (3.1)

where 9 is related to the dimensional frequency by

a
" 1+ -oU.

4 1• -
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Here o and A denote parameters that need to be specified. Since by

definition =G_ 0 atthe stagnation point, its location, s, is given by

Es= "Z;o(1 + A sin t1) (3.2)

and so the upper and lower surfaces of the airfoil as functions of time are

defined, in particular, by E > Es and E < Es. For example, let us take A a 1,

w = n/4 and plot Es/Eo in the (t,E)-plane, as shown in Figure 1 for one cycle

(0 tI < 8).

0#0

"°o~ f 2,

-2 -1 0 1
I/o

Fig. I. Variation of stagnation point with time for one cycle according to

Eq. (3.2), with w = n/4, A - 1.

When t1 =2, the stagnation point E is at -2Eo, whe t1  6 is at 0, etc. If

Es were fixed, we could assume that u a 0 at E - E for all time and all n,
but this is not the case. It is also possible to assume that the stagnation

point is coincident with zero u-velocity for a prescribed time. However, we

should note that the stagnation point given by Eq. (3.2) is based on the van-
ishing of the external velocity. For a time-dependent flow, this does not

necessarily imply that the u-velocity is zero across the layer for a given

.E-location and specified time. This point is substantiated by the results

shown in Figure 2 taken from Ref. 8 and obtained with a novel numerical pro-

cedure called the characteristic box scheme. It is also evident from Figure 2

that flow reversals do occur due to the movement of the locus of zero

u-velocity across the layer. This causes numerical instabilities which can be

54'
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avoided by using either the zig-zag box or the characteristic box finite-

difference scheme. The details of these numerical schemes have been reported

in Ref. 7 and, with special reference to oscillating airfoils, in Ref. 8.

3.2 Downstream Region

A solution to the leading-edge region, obtained by the procedure of Section

3.1, may be used as initial conditions for the solution of the system of equa-

tions given by Eqs. (2.7) and (2.8). This can conveniently be done by using

Keller's box scheme, which reduces Eq. (2.71) to a first-order system. With f'

and f" represented by r and v, respectively, we write

- = r (3.3a)

r' - v (3.3b)

and obtain

v- +- -E r2 + +2)e Ue + (J 2)3/2 aUe' '+ +I ( + tr- 11+ T

r 3r - v 3 + (1 + E2 ar (3.3c)

With this notation, the boundary conditions given by Eq. (2.8) can be written

as

, f-r- 0 at n- 0 (3.4)

2 1/2-
re -(I + 2 1 e at n - ne  (3.5)

- The system of Eqs. (3.3) and (3.4) has been solved by the numerical procedure

of Ref. 7.

'. 4.0 NATURE OF THE SINGULARITY FOR AN OSCILLATING AIRFOIL

' One phase of the calculations for the oscillating airfoil was carried out by

choosing Eo a I, A - -1/2 and 0.1. With these choices the maximum value

of aeff, defined by

4.



-leff = o(l + A sint I ) (4.1)

is sufficient to provoke separation with a strong singularity if the boundary

layer were steady. At present Eo, A, w are being varied to examine their

.. effect on the nature of singularity.

The unsteady flow calculations displayed in Fig. 3 show that the boundary layer

eventually separates, the flow remaining smooth. However, just downstream of

separation, it is evident that a singularity develops in the solution in the

neighborhood of E = 2.12 and it= 308.750 and that it is not possible to

continue the solution beyond this time without conceptual changes in the

mathematical and physical formulation of the problem. While this is a satis-
fying conclusion, and may be interpreted as giving theoretical support to

experimental observations of dynamic stall, it should be treated with some

caution. Boundary-layer singularities have been the subject of much contro-

versy in recent years and it is clearly important to make sure that any irreg-

ularities in a computed solution are not creatures of the numerical method

used. We, however, feel confident that the calculations reported here are

accurate and that the singularity is real.

-. -Figure 3a shows that the variation of the displacement thickness

+ T (-"--) L. (4.2)
a 'r

is generally smooth except in the neighborhood of E = 2.12 and for -t1 =

:-2:* 308.750. The first sign of irregularity is the steepening of the slope of %*

when Ut1 - 3000 . A local maximum of W* occurs at E a 2.12 when Ztl -
308.75* . When the same results are plotted for a displacement velocity, (d/dE)

(ue6*), (Fig. 3b), we observe that the steepening of the displacement velocity

near E - 2.12 is dramatic. For example, for ;t1 - 3000, the peak is at E •

2.125, for Ut1 - 3050, it is at * 2.105, for utl - 307.50, it is at E

2.09 and finally for Ztl a 308.750, the peak moves to E - 2.08. It should be

" noted that the maximum value of displacement velocity moves towards the separation

. point with increasing ;utl; the same behavior will be shown to occur for

the circular cylinder discussed below.

.'.'7
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As shown in Fig. 3c, the wall shear parameter fw shows no signs of irregularity

for wt, < 308.750 but a deep minimum in fw occurs near =2.15, i.e. near
the peak of '*

It is interesting and useful to compare the results presented in Fig. 3 for an

oscillating airfoil with those obtained for a circular cylinder started
impulsively from rest. This comparison lends support to the accuracy of the

present calculation method and at the same time enables us to compare the
characteristics of two distinctly different unsteady flows near the singularity
location. The circular cylinder problem has been extensively studied as
reported in Refs. 9 and 10 and the present results shown below are in close

agreement with those of previous authors, but with subtle differences which may
have important implications.

Figure 4 shows the results obtained by Cebec i2 for the circular cylinder

* problem. As in the case of the oscillating airfoil, the flow separates and
remains smooth up to the separation point. However, just downstream of sepa-
ration with increasing time, a singularity develops in the neighborhood of 0

-1120 and t = 3.0 and it was not possible to continue the boundary-layer
calculations beyond this time and angular location. From Fig. 4a we see that

* while the variation of displacement thickness. is smooth for values of 0 less
than 1080, it begins to steepen dramatically thereafter. The same results are

plotted in Fig. 4b to demonstrate that, as in Fig. 3b, the displacement veloc-
ity exhibits a maximum which increases rapidly with time. Again the maximum

shifts towards the location of separation with increasing time.

The results of local skin-friction coefficient calculations in Fig. 4c follow

* similar trends of those obtained for the oscillating airfoil. In both cases,
the distributions pass through zero with no signs of irregularity and do not

exhibit any breakdown before the time corresponding to the singularity.

The very careful calculations of van Donmmelen and Shen are reproduced on

Figures 5 and 6 for displacement thickness and velocity profiles, respectively.

The corresponding displacement thickness results of Ceeitogether with the
new calculations of the velocity profiles are reproduced for comparison
purposes. As can be seen from Fig. 59 the agreement between the sets of calc-

.4 ulations for three values of t a 2, 2.5 and 2.75 is excellent. The velocity

8



0"

profiles of Fig. 6a, which correspond to a time t = 2.75 as in Fig. 5c, are

also in excellent agreement for various angular locations. In contrast, the

calculated velocity profiles of van Dommelen and Shen11 at t - 2.984375 show

differences from the present results obtained at t = 2.9875. The figure con-

firms the expected close agreement of the two sets of results at the two
'" smallest angular locations, but indicates significant differences at the two

- highest values. The trend is different in that the present results show that

the location and the magnitude of the maximum negative velocity increases with

angular location. Also the tendency for flattening of the velocity profiles

in the vicinity of the singularity is not confirmed by the present results.

Figure 7 shows the velocity profiles obtained by Cebeci2 for two values of t
as a function of angular location. It is clear that the magnitude of negative

velocity increases with angular location and suggests that as the singularity

is approached, the magnitude of the negative velocity will tend to infinity.

Figure 8 allows comparison of the displacement velocities obtained by Cowley3

and by the present method for four values of time. We would expect, from the

previous comparisons that the two sets of results would be in close accord at
least for times up to 2.75. The figure shows the expected close agreement

until the maximum value is approached. The discrepancies apparent at higher
values of e cannot readily be explained, and it should be noted that the

-- location and time of singularity occur at different values of e; the results
of Cowley and van Dommelen and Shen appear to agree in this respect. The

reasons for these discrepancies are presently under investigation.
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